B555 - Machine Learning - Homework 4

Enrique Areyan
April 28, 2015

Problem 1: Give decision trees to represent the following Boolean functions

a) ANB

b) AV [BAC]

c) Ae B

d) [ANB|V[C A D]

e) [AVB]A[CVD]®B

where A is a negation of A and @ is an exclusive OR operation.

Solution: I will use the convention that a path from the left of a node for attribute A corresponds to that attribute
being true (A), and a path to the right corresponds to the attribute being false (A).

a) b) c)

true

false true true false false true

d) e) Note: read it like {{[AV B]A[CV D]} @ B

true false false false

true false true false true

true false false true

Problem 2: Consider the data set from the following table

Sky Temperature | Humidity | Wind | Water | Forecast | Enjoy Sport
1 | Sunny Warm Normal | Strong | Warm Same Yes
2 | Sunny Warm High Strong | Warm Same Yes
3 | Rainy Cold High Strong | Warm | Change No
4 | Sunny Warm High Strong | Cool | Change Yes

a) Using Enjoy Sport as the target, show the decision tree that would be learned if the splitting criterion
was information gain

b) Add the training example from the table below and compute the new decision tree. This time, show the
value of the information gain for each candidate attribute at each step in growing the tree.

Sky | Temperature | Humidity | Wind | Water | Forecast | Enjoy Sport
1 | Sunny Warm Normal | Weak | Warm Same No

Solution: I will use the notation from the Tom Mitchel’s book to denote a set with positive and negative examples,

eg., S =

[3+,1—] in the first data set (there are 3 positive examples corresponding to Enjoy Sport = yes,

and 1 negative example corresponding to Enjoy Sport = no).

3 3 1 1
a) Let S = [3+,1—]. Then, Entropy(S) = —11092 (4) - 1l092 (4) ~ 0.8113.

Clearly, if the splitting criterion is information gain we will split either by attribute Sky or Temperature
since both of these partition the training set immediately. Nonetheless, let us check that the math works.
We will use the following formula to compute information gain for attribute A:

ii.

ii.

iv.

Gain(S, A) = Entropy(S) — Z ||sz’||Entropy(Sv)
(A)

veValues

. Values(Sky) = {Sunny, Rainy}.

Ssunny < [3+,0—] = Entropy(Ssunny) = 0.
SRainy ¢ [0+,1—] = Entropy(Srainy) = 0.
Gain(8, Sky) = 0.8113 — 0 — 0 = | Gain($, Sky) = 0.8113

Values(Temperature) = {Warm, Cold}.

Swarm < [3+,0—] = Entropy(Swarm) = 0.

Scold < [0+,1—] = Entropy(Scoeid) = 0.

Gain(S, Temperature) = 0.8113 — 0 — 0 = ‘ Gain(S, Temperature) = 0.8113 ‘

Values(Humidity) = {Normal, High}.
SNormal — [1+a0_] = Entropy(sNormal) =0.
2

2 1 1
Stigh < [24,1—] = Entropy(Swigh) = —glogg (3> - glogg (3) ~ 0.9183.

3
Gain(S, Humidity) = 0.8113 — 0 = 10.9183 = | Gain(S, Humidity) = 0.1226 |

Values(Wind) = {Strong}.

3 3 1 1
Sstrong < [3+,1—] = Entropy(Ssirong) = —Zlogg (4> - Zlogg (4) ~ 0.8113.

Gain(8, Wind) = 0.8113 — 0.8113 = | Gain(S, Wind) = 0|

Values(Water) = {Warm, Cool}.

2 2
Swarm < [2+,1—] = Entropy(Swarm) = —=logs ()

1l ! ~ 0.9183
3 3 0g> 3 ~ U. .

3
Scool [14,0—] = Entropy(Scoor) = 0.

3
Gain(S, Water) = 0.8113 — 0 — 70.9183 = | Gain(S, Water) = 0.1226

vi. Values(Forecast) = {Same, Change}.
Ssame < [24,0—] = Entropy(Ssame) = 0.

1 1 1 1
Schange < [1+,1—] = Entropy(Schange) = —51092 <2) - §l092 <2> =1.

1
Gain(S, Forecast) = 0.8113 — 0 — 51 = ‘ Gain(S, Forecast) = 0.3113 ‘

We have a tie between Sky and Temperature for the attributes with higher Information Gain. Choose
one randomly, say Temperature to get the decision tree for the concept Enjoy Sport:

Temperature
Warn7 \C’old
Yes No
b) Let us go through the same process as before but adding the new training example.
3 3 2 2
Let S = [34+,2—]. Then, Entropy(S) = —glogg <5> - 31092 <5> ~ 0.9710.
i. Values(Sky) = {Sunny, Rainy}.
3 3 1 1
SSunny [3+, 1—] = Entropy(Ssunny) = —Zlogg (4) — Zlogg (4) ~ 0.8113.
SRainy — [O+a 1_] g Entropy(SRainy) =0.
4
Gain(S, Sky) = 0.9710 — 208113 — 0 = | Gain(S, Sky) = 0.3220

ii. Values(Temperature) = {Warm,Cold}.

3 3 1 1
Swarm < [3+,1—] = Entropy(Swarm) = —Zlogg (4> — Zlogg (4> ~ 0.8113.

ScCold < [O—i-, 1—] — Entropy(Scold) =0.
4
Gain(S, Temperature) = 0.9710 — 50.8113 -0= ‘ Gain(S, Temperature) = 0.3220‘

iii. Values(Humidity) = {Normal, High}.

1 1 1 1
SNormai < [1+,1—=] = Entropy(Snormai) = —§log2 <2> — ilOQQ <2> =1.
2 2 1 1
SHigh < [24,1—] = Entropy(Swigh) = —glogg 3) - glogg 3 ~ 0.9183.

2 3
Gain(S, Humidity) = 0.9710 = -1 — -0.9183 = | Gain(S, Humidity) = 0.0200|

iv. Values(Wind) = {Strong, Weak}.

3 3 1 1
Sstrong < [3+,1—] = Entropy(Ssirong) = 711092 (4> — Zlogg (4> ~ 0.8113.

Sweak < [0+, 1—] = Entropy(Ssirong) = 0.
4
Gain(S, Wind) = 0.9710 — 50.8113 0= ‘ Gain(S, Wind) = 0.3220‘

v. Values(Water) = {Warm, Cool}.

2 2 2 2
Swarm < [24,2—] = Entropy(Swarm) = —11092 (4> — Zlogg (4> =1.

Scool + [14,0—] = Entropy(Scoor) = 0.
4
Gain(S, Water) = 0.9710 — 21 —0 = | Gain(S, Water) = 0.1710|

vi. Values(Forecast) = {Same, Change}.

2 2 1 1
Ssame < [24,1—] = Entropy(Ssame) = —glOgg (3) — glOgg (3) ~ 0.9183.

1 1 1
Schange < [1+,1—] = Entropy(Schange) = —51092 (2) — §l0g2 <2> =1.

3 2
Gain(S, Forecast) = 0.9710 — 20,9183 — =1 = | Gain(S, Forecast) = 0.0200|

—_

There is a three way tie between attributes Sky, Temperature and Wind. 1 am choosing Temperature
first:
Temperature

Warn% \C’old
o

[3-+,1-] N

Now we have to repeat the process but considering the S to contain only points S = {1,2,4,5}

3 3 1 1
In this case S = [3+,1—]. Then, Entropy(S) = _ZZOQQ (4) - Zlogg (4) ~ 0.8113.

i. Values(Sky) = {Sunny, }.

3 3 1 1
Ssunny < [3+,1—] = Entropy(Ssunny) = —zlogg <4> — zlogg (4) ~ 0.8113.

Gain(S, Sky) = 0.8113 — %0.8113 — | Gain(9, Sky) = 0|

ii. Values(Humidity) = {Normal, High}.

1 1 1 1
SNormai < [14,1—] = Entropy(Snormai) = _§l092 (2) — 51092 (2) =1.

SHigh < [24,0—] = Entropy(Swign) = 0.
2
Gain(S, Humidity) = 0.8113 — 71 -0 = | Gain(S, Humidity) = 0.3113

iii. Values(Wind) = {Strong, Weak}.
SStrong — [3+, 0—] - Entropy(SStmng) =0.
Sweak < [0+, 1—] = Entropy(Ssirong) = 0.

Gain(S, Wind) = 0.8113 — 0 — 0 = | Gain(S, Wind) = 0.8113 \

iv. Values(Water) = {Warm, Cool}.

2 2
Swarm < [2+,1—] = Entropy(Swarm) = —=l0ogs ()

1l L) ~ 0.9183
3 3 092 3 ~ U. .

3
Scool [14,0—] = Entropy(Scoor) = 0.

3
Gain(S, Water) = 0.8113 — 70.9183 — 0 = | Gain(S, Water) = 0.1226

v. Values(Forecast) = {Same, Change}.

2 2 1 1
Ssame « [24,1—] = Entropy(Ssame) = —glogg (3) — glogg (3) ~ 0.9183.

SChange — [14’707] — Entropy(SChange) =0.
Gain(S, Forecast) = 0.9710 — 20.9183 — 0 = Gain(8, Forecast) = 0.2823 |

Attribute Wind has the highest information gain, so we separate by this attribute:

Temperature

WarV Yold

Wind No
S trong/ \/Veak
Yes No

All training examples are correctly classified. Hence, this is the final tree.

Problem 3:

Solution:

Problem 4:

Solution:

Consider a two-layer feed-forward neural network with two inputs z; and x5, one hidden unit z, and one
output unit f. This network has five weights (w1, we,, wo,, W, s, Wos) Where wy, represents the bias for unit
z and where wqs represents the bias for unit f. Initialize these weights to the values (0.1, -0.1, 0.1, -0.1, 0.1),
then give their values after each of the first two training iterations of the backpropagation algorithm. Assume
learning rate n = 0.3, momentum p = 0.9, incremental weight updates, and the following training examples

{((@1,22)i,90) ¥y = {((1,0),1),((0,1),0)}

Using the tool pybrain in python we can obtain the weights of two iterations of Backpropagation:

W1z W2z W0z Wy f wo f
1 | 0.087 | -0.102 | 0.085 | 0.137 | 0.520
2 | 0.083 | -0.123 | 0.060 | 0.266 | 0.710

Note that this neural network has only one hidden unit, so it will learn a linear concept analogous to logistic
regression. It is interesting to see the lines generated by the hidden unit for the first two iterations:

10

08 - |

0o = R

0.4} .

0.0 i i i i
00 02 04 06 08 10

We start to see how the neural network adapts to the data, which in this case is linearly separable. The green
line correspond to the second iteration and the blue to the first iteration.

Consider minimizing the following regularized error function using the backpropagation algorithm

n m
E= ZZ(ZJU — fi5)? + 72101'2,3'
i=1 j=1 ,J

Derive the gradient descent update rule for this error function. Show that it can be implemented by mul-

tiplying each weight by some constant before performing the standard gradient descent update as shown in
class.

Following the notation used in class, let us minimize the above regularized error function. Note:
We will use the notation b, for the weights from hidden unit Z, to output f,.

We will use the notation a., for the weights from input X, to hidden unit Z,.

Now we optimize. First for ’'s and later for a’s:

OF a[

Obue Obuy ZZ(yZJ fz])

Db [vzw 1

a 2
] abuv [wi’j]

n 0 m
- 1;1 8buv [Z (y'LJ f”)z

((yir — fir)* + (a2 — fi2)®> + -+ Wim — fim))} + 29y

|
- {f —2(Yiu — fiu) - afmgp(b{zi)} + 29buy = (1)

—x

1 e *

Choose ¢(z) = g Then ¢'(z) = 1 fe—x)Q -
(1) = [Z::l (ym fw) (

Note that f;, = ¢(blz;) which means that, 1 —

® - [

Let ﬁlu = *Q(yiu - fzu)fzu(l

The update rule for gradient descent is

n
bg},tlj—l) = b'g/,tg - 77{ [Z Biuziv

=1

e) -

Optimization for a’s:

OF al

Oty Oayy

h
By definition bl'z; = Y° bjz;;. Thus,
=1

0

Oayy

(ap(b?zi)) =

fiu:(l_

— fiu) to conclude that

oE
abuv [Z /BZUZ’LU

¢ (b} z;)

¢ (bT2;)b;,,

1—1—6_96.1—"-6_37

2)(1 - so(bzzi))ziv] T 2by = (2)

©(bl'z;)) Thus,

+ 29byy

lz ﬁwzw] —2mb{f) = (1= 2n7)b

i=1

bTZi

Oy,

@/(b?Zl)aa <§ bﬂzd>

0
aauv (Zzu)

0
@/(bjrzi)bju@ (p(alx;))

<P/(bjrzi)bju90 (a Xi)Tip = (4)

= ¢(@)(1 = ¢(z))

lz ﬁluzw]

Replacing (4) into (3) and rearranging:

OF
O0yy

Il
Mﬁ

[Z(yw‘ — fij)#' (6] 2i)bjugp’ (g Xi)Tiv | + 27000

Jj=1

-
|

I
M3

s
I
-

{=2(yi; — fij)€' (6] 2:) } bju (LX) i | + 2Yu0

;
;

Let oy, = Bijbjuga’(afxi)xiv = Bijbjuziu(l — i) iy, and replace in (5) to conclude that

n
§ Ay Ly

i=1

1

I
3

&
Il
-

Biibju' (al%:) 70 | + 270 = (5)

Il
-

0E
Oty

+ 29y

The update rule for gradient descent is

atth = at) — { [Z QinTip | + 27(1&)} =al [Z Olzul'w‘| —2myall) = (1 - 2ny)all) — [Z awxwl

i=1 =1

The gradient descent update rule for this error function is:

ait:—l) = (1 - 277’7)0’7(}3 - nzaiuxiv
i=1

b = (1= 2n)b) — nZﬁwzw

b: for every u € {1,2,...,m} and for every v € {1,2,...,h}
a: for every u € {1,2,...,h} and for every v € {1,2,...,k}

This shows that the minimization of the regularized error function can be implemented by multiplying each
weight by the constant (1 — 277y) before performing the standard gradient descent update.

Problem 5:

Solution:

Using the neural network code from class as a starting point, compare the following ensemble methods
in a binary classification scenario: 30 bagged neural networks with 30 bagged regression trees. In each
case, the final decision is made by averaging the raw outputs from the ensemble members. Use at least 3
different classification data sets to provide comparisons. Select appropriate data sets from the UCI Machine
Learning Repository. Proper comparisons should be made using 10-fold cross-validation experiments. Use
your knowledge about model comparison to formally conclude which of the two algorithms is better. Normalize
the variables on the training set, then normalize the test set using the normalization parameters from the
training set (e.g. mean and standard deviation for each feature). If data sets have categorical variables,
provide a proper approach to convert them into numerical variables. Use classification error to evaluate
quality of classifiers.

All the code for this problem was produced using MatLab. As usual, you can find the code attached to the
OnCourse submission.

I tested the following three data sets:

1. Spambase: https://archive.ics.uci.edu/ml/datasets/Spambase
2. Transfusion: https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
3. Tonosphere: https://archive.ics.uci.edu/ml/datasets/Ionosphere

Results on each of the sets follow:

Spambase Transfusion Ionosphere

Run # | NN Trees Run # | NN Trees Run # | NN Trees

1 0.084547 | 0.012606 1 0.2139 0.13503 1 0.048433 | 0.014245
2 0.082591 | 0.013475 2 0.21123 | 0.12567 2 0.045584 | 0.005698
3 0.079548 | 0.012823 3 0.21524 | 0.1377 3 0.045584 | 0.011396
4 0.082156 | 0.0097805 4 0.20455 | 0.13636 4 0.037037 | 0.005698
5 0.081287 | 0.012171 5 0.21257 | 0.13636 5 0.039886 | 0.014245
6 0.084982 | 0.010867 6 0.21257 | 0.13235 6 0.045584 | 0.008547
7 0.079331 | 0.012171 7 0.21791 | 0.13369 7 0.051282 | 0.002849
8 0.081287 | 0.011737 8 0.21524 | 0.12701 8 0.037037 | 0.011396
9 0.082156 | 0.012606 9 0.20722 | 0.13235 9 0.045584 | 0.014245
10 0.081504 | 0.0099978 10 0.2139 0.13503 10 0.051282 | 0.008547
11 0.083895 | 0.010867 11 0.21524 | 0.13235 11 0.025641 | 0.011396
12 0.084112 | 0.01391 12 0.2139 0.13235 12 0.054131 | 0.008547
13 0.082591 | 0.013041 13 0.21257 | 0.13102 13 0.039886 | 0.011396
14 0.084764 | 0.012823 14 0.21123 | 0.13235 14 0.054131 | 0.014245
15 0.084112 | 0.012171 15 0.21257 | 0.12299 15 0.045584 | 0.008547
16 0.082808 | 0.013693 16 0.21257 | 0.12834 16 0.039886 | 0.005698
17 0.078461 | 0.011085 17 0.20989 | 0.13235 17 0.039886 | 0.008547
18 0.084112 | 0.013475 18 0.21123 | 0.12968 18 0.039886 | 0.008547
19 0.079548 | 0.012389 19 0.21524 | 0.12567 19 0.05698 0.017094
20 0.083243 | 0.012171 20 0.21123 | 0.13904 20 0.042735 | 0.011396
21 0.086286 | 0.012606 21 0.2139 0.12032 21 0.051282 | 0.008547
22 0.084764 | 0.012389 22 0.21257 | 0.12299 22 0.054131 | 0.008547
23 0.08759 0.011302 23 0.21524 | 0.13235 23 0.039886 | 0.014245
24 0.081939 | 0.012171 24 0.2139 0.13235 24 0.048433 | 0.008547
25 0.080852 | 0.012171 25 0.20856 | 0.12968 25 0.045584 | 0.014245

These results corresponds to 25 runs of the corresponding bagged algorithm. Each bag consisted of 30 mod-
els, i.e., either 30 Neural networks or 30 Trees respectively. Neural Networks are feedforwad networks with
1 hidden layers of 10 neurons and trained using Scaled Conjugate Gradient. The models for the bags were
selected by 10-fold cross-validation. Note that all the data was normalized before training the models.

All of the datasets are binary and thus, the final decision was made by taking a majority vote of individual
decisions from the 30 constituents of a single bag. In case of a tie, one class was chosen randomly and with

equal probability. For each run we have the classification error defined as:

_ #fexamples incorrectly classified

E
#total data set

For example, for the Spambase, run 1, the bagged Neural Network (NN) misclassified 0.084547 (about 8.4%
of examples) whereas the bag of Trees misclassified 0.012606 (about 1.2% of examples).

Just inspecting the data one can conclude that Trees outperformed NN in every case. For mathematical
sound evidence, let us perform two different statistical tests:

1. Let us hypothesize that NN perform the same as Trees, i.e.,
Hy: T=NNvwvs. H :T > NN

Suppose that Hy is true. In this case the probability that Trees won 25 times out of 25 is given by:

25 7 25—1 25 25—25 25
25\ /1 1 25\ /1 1 1
— } : - s - e e =(=) =2.98023223876953125 x 10~ 8

Clearly, this is a small enough probability at any reasonable level. Conclude that it is not the case that
T = NN. Note also that this test apply to all 3 data sets since in all of these Trees won every time.

2. The next test is a T-test for the means of two independent samples. The samples in this case are the
results for NN and trees. For this I used the following function provided by the Python package SciPy:

(ttest, pvalue) = ttest _ind(data _nnli],data_treesli])

Where data_nnl[i] is a vector of 25 numbers with the results for bagged neural networks. Likewise,
data_trees|i] is a vector of 25 numbers with the bagged results for trees.

According to the function documentation (see [4.]), this function: "Calculates the T-test for the means
of TWO INDEPENDENT samples of scores. This is a two-sided test for the null hypothesis that 2
independent samples have identical average (expected) values. This test assumes that the populations
have identical variances ... We can use this test, if we observe two independent samples from the same
or different population, e.g. exam scores of boys and girls or of two ethnic groups. The test measures
whether the average (expected) value differs significantly across samples. If we observe a large p-value,
for example larger than 0.05 or 0.1, then we cannot reject the null hypothesis of identical average scores.
If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of
equal averages."

The results of the test for each data set are:

dataset ttest pvalue

spambase | 142.1723269 | 1.12071685 x 10~%4
transfusion | 73.26719721 | 6.34244720 x 10~°!
ionosphere | 22.03061111 | 9.55472889 x 1027

Clearly and in all cases we reject the hypothesis that the mean of the classification error of the algorithms
are the same.

Together tests (1) and (2) provide strong evidence that bagged Trees outperform bagged Neural Networks for
all 3 datasets tested. This may be due to the fact that these are small datasets where Trees have a greater
chance of fitting the data. An alternative reason is that we would need more than 10 neurons to obtain better
results for neural networks.

References
[1. | www.pybrain.org
[2.] Tom Mitchel’s book chapter on decision trees
[3.] UC Irvine Machine Learning Repository: https://archive.ics.uci.edu/ml/index.html

[4.] https://docs.scipy.org/doc/scipy /reference/generated /scipy.stats.ttest _ind.html#scipy.stats.ttest _ind

